

Limited Data Emotional Voice Conversion Leveraging Text-to-Speech: Two-Stage Sequence-to-Sequence Training

Introduction

- Emotional voice conversion (EVC): transform the emotional prosody while preserving the linguistic content and speaker identity;

- Sequence-to-sequence (seq2seq) methods:
- allows for the duraion prediction;
- jointly model spectrum and prosody;
- focus on emotion-relevant regions through attention;
- But always require a large amount of training data!

Our contributions:

- without the need of parallel data, and flexible for many-to-many emotional voice conversion;

- only needs limited amount of emotional

- The first work of seq2seq emotional voice conversion that only needs a limited amount of emotional speech! data to train!

Proposed Framework

Figure 1: Visualization of emotion embedding derived from (a) style encoder and (b) emotion encoder.

emotional speech data.

-- Validate our idea of 2-stage training!

groups for each emotion type, while those from the style encoder fail to provide a clear pattern!

Berrak Sisman², Haizhou Li¹ Kun Zhou¹,

¹ Dept. of Electrical and Computer Engineering, National University of Singapore, Singapore ² Singapore University of Technology and Design, Singapore

Codes & Speech Samples:

For any inquiries: Please email: zhoukun@u.nus.edu - Investigate different training strategies for WaveRNN vocoder training;

- Experimental results show a significant improvement of the performance.

References

[1] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart, F. Stimberg, A. Oord, S. Dieleman, and K. Kavukcuoglu, "Efficient neural audio synthesis," in ICML 2018; [2] J.-X. Zhang, Z.-H. Ling, and L.-R. Dai, "Non-parallel sequenceto-sequence voice conversion with disentangled linguistic and speaker representations," IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019

[3] C. Veaux, J. Yamagishi, K. MacDonald et al., "Cstr vctk corpus: English multi-speaker corpus for cstr voice cloning toolkit,"

[4] K. Zhou, B. Sisman, R. Liu, and H. Li, "Seen and unseen emotional style transfer for voice conversion with a new emotional speech dataset," IEEE ICASSP, 2021. [5] K. Zhou, B. Sisman, and H. Li, "Transforming Spectrum and Prosody for Emotional Voice Conversion with Non-Parallel Train-

ing Data," in Proc. Odyssey 2020;

[6] G. Rizos, A. Baird, M. Elliott, and B. Schuller, "Stargan for emotional speech conversion: Validated by data augmentation of end-to-end emotion recognition," in ICASSP 2020;

Paper ID: 781

Table 2: A comparison of DDUR [s] values for the voiced parts.

			•	
Systems		Seq2seq-EVC-GL	Seq2seq-EVC-WA1	Seq2seq-EVC-WA2
Neu-Ang	Best	0%	19%	81%
	Worst	94%	6%	0%
Neu-Hap	Best	0%	32%	68%
	Worst	97%	3%	0%
Neu-Sur	Best	6%	25%	69%
	Worst	94%	3%	3%
Neu-Sad	Best	0%	10%	90%
	Worst	94%	6%	0%